Indian Statistical Institute Mid-Semestral Examination Topology II - MMath I

Max Marks: 40

Time: 180 minutes.

Answer all questions. In what follows "E, X" will always denote spaces that are path connected and locally path connected.

- (1) Decide whether the following statements are TRUE or FALSE. Justify. Answers not accompanied by a correct justification will not be awarded any marks.
 - (a) If $p: E \longrightarrow X$ is a covering and $p_*: \pi_1(E, e) \longrightarrow \pi_1(X, p(e))$ is surjective, then p is a homeomorphism.
 - (b) Let X be the space obtained from S^2 by identifying (0,0,1) with (0,1,0). Then X is simply connected.
 - (c) There exists a covering $p: E \longrightarrow S^1 \vee S^1$ with $\operatorname{Cov}(E/S^1 \vee S^1) \cong \mathbb{S}_3$, the symmetric group on three letters.
 - (d) If X has a universal cover, then X is semi-locally simply connected. $[4 \times 2]$
- (2) Let Y denote the following subspace of \mathbb{R}^2 :

 $Y = (\{0\} \times [0,1]) \cup (\{1/n\}_{n \ge 1} \times [0,1]) \cup ([0,1] \times \{0\}).$

Show that there exists a homotopy $F_t: Y \longrightarrow Y$ with $F_0 = 1_X$ (the identity map of X) and $F_1 = c_{(0,1)}$ (the constant map at (0,1)). Show that any such homotopy cannot in addition satisfy $F_t(0,1) = (0,1)$ for all $t \in [0,1]$. [4+4]

- (3) Show that the following statements are equivalent for a map $f: S^n \longrightarrow X$.
 - (a) f is homotopic to constant.
 - (b) f can be extended to a map $D^{n+1} \longrightarrow X$.
 - (c) If $x_0 \in S^n$ and $c: S^n \longrightarrow X$ is the constant map at $f(x_0)$, then there is a homotopy $F: f \sim c$ with $F(x_0, t) = f(x_0)$ for all $t \in [0, 1]$.

Recall that D^{n+1} denotes the set of elements $x \in \mathbb{R}^{n+1}$ with $||x|| \le 1$. [8]

- (4) Define the term : regular covering. Show that a covering $p: E \longrightarrow X$ is regular if and only if for each closed path $\alpha : [0,1] \longrightarrow X$, either every lifting $\tilde{\alpha}$ of α is a closed path or no lifting $\tilde{\alpha}$ of α is a closed path. [2+6]
- (5) Let F₂ = ℤ * ℤ be the free product of two copies of ℤ, the first copy generated by a and the second generated by b. Let H = ⟨⟨{ab, ba, a⁴}⟩⟩ be the normal closure of {ab, ba, a⁴} in F₂.
 (8) Then show that H has finite index in F₂.